Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Book Review
Brief Report
Case Letter
Case Report
Case Series
Commentary
Current Issue
Editorial
Erratum
Guest Editorial
Images
Images in Neurology
Images in Neuroscience
Images in Neurosciences
Letter to Editor
Letter to the Editor
Letters to Editor
Letters to the Editor
Media and News
None
Notice of Retraction
Obituary
Original Article
Point of View
Position Paper
Review Article
Short Communication
Systematic Review
Systematic Review Article
Technical Note
Techniques in Neurosurgery
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Book Review
Brief Report
Case Letter
Case Report
Case Series
Commentary
Current Issue
Editorial
Erratum
Guest Editorial
Images
Images in Neurology
Images in Neuroscience
Images in Neurosciences
Letter to Editor
Letter to the Editor
Letters to Editor
Letters to the Editor
Media and News
None
Notice of Retraction
Obituary
Original Article
Point of View
Position Paper
Review Article
Short Communication
Systematic Review
Systematic Review Article
Technical Note
Techniques in Neurosurgery
Generic selectors
Exact matches only
Search in title
Search in content
Post Type Selectors
Search in posts
Search in pages
Filter by Categories
Book Review
Brief Report
Case Letter
Case Report
Case Series
Commentary
Current Issue
Editorial
Erratum
Guest Editorial
Images
Images in Neurology
Images in Neuroscience
Images in Neurosciences
Letter to Editor
Letter to the Editor
Letters to Editor
Letters to the Editor
Media and News
None
Notice of Retraction
Obituary
Original Article
Point of View
Position Paper
Review Article
Short Communication
Systematic Review
Systematic Review Article
Technical Note
Techniques in Neurosurgery
View/Download PDF

Translate this page into:

Letters to the Editor
9 (
3
); 439-440
doi:
10.4103/jnrp.jnrp_48_18

White Matter Changes in Corpus Callosum in a Patient with Idiopathic Normal Pressure Hydrocephalus?

Department of Neurology, Neurology Clinic, Yozgat City Hospital, Yozgat, Turkey
Address for correspondence: Dr. Halil Onder, Neurology Clinic, Yozgat State Hospital, Yozgat, Turkey. E-mail: halilnder@yahoo.com
Licence

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

Disclaimer:
This article was originally published by Medknow Publications & Media Pvt Ltd and was migrated to Scientific Scholar after the change of Publisher.

Sir,

I read with great interest the article by Mullaguri et al., in which they describe a normal pressure hydrocephalus (NPH) patient presenting with coma after quetiapine and trazodone overdose, at whom cranial magnetic resonance imaging showed diffuse corpus callosum T2 hyperintensity.[1] They associated the neuroimaging changes with shunt surgery for NPH and gave some crucial insights for clinical concerns.[1] I appreciate the authors for pointing out this interesting patient and for constituting impressive discussions. However, I would like to comment on some aspects for a better understanding of the issue and also, in the light of the related literature data, I would like to suggest some new discussions for further clarifications in this regard.

First, a major point to be discussed is that T2 hyperintense changes in the corpus callosum are a recognized entity in obstructive hydrocephalus subtypes but rather atypical in communicating hydrocephalus.[23] In accordance with this knowledge, it has been explained to develop in the setting of long-standing mechanical compression by the falx cerebri, rather encountered in obstructive hydrocephalus. Such that, in a crucial study, Spreer et al. associated the presence of callosal hypodensity with “forced ventricular drainage” emphasizing the altering pressure dynamic in ventricular systems.[4] Furthermore, Lane et al. emphasized that they had not observed any of the callosal signal changes in patients with communicating forms of hydrocephalus.[3] Hence, I think that while associating the callosal hyperintensity with ventriculoperitoneal (VP) shunting in a patient with NPH, a meticulous evaluation needs to be conducted. Based on the presentation of this case, the diagnosis of toxic encephalopathy associated with drug overdosage and related callosal changes cannot be excluded. Remarkably, diffusion-weighted imaging (DWI) data, which is a crucial tool for understanding the nature of lesion of corpus callosum,[56] were not mentioned in the report constituting a major limitation. For instance, high signal in DWI might rather suggest an underlying toxic encephalopathy.[6]

Second, the authors described the callosal changes as occurring due to VP shunting for the NPH (in the abstract section). It has been pointed out that signal alterations of corpus callosum can be seen in patients scanned after shunting for obstructive hydrocephalus.[3] Although the mechanism of the development of this neuroimaging sign is not exactly clarified, these changes were mainly explained to be secondary to long-standing hydrocephalus, rather than the effect of shunt surgery primarily.[7] Hence, I think that this statement in the abstract section[1] may cause misleading conclusions associating the callosal changes with primarily the effect of shunt surgery.

Another interesting point in this regard may be that, as also the authors mentioned, mechanical compression by the falx cerebri resulting in ischemic demyelination was a major hypothesis to explain these neuroimaging changes.[347] However, no clinical signs those might be attributed to callosal malfunction were seen in these patient groups.[1347] In my opinion, considering that no any malfunction of corpus callosum is present in these patients, explaining these lesions as “ischemic injury”[3] based on solely a neuroimaging finding of T2 hyperintensity may be irrational. I think that defining these changes as a neuroimaging sign of altering pressure dynamics in these patient subgroups might be more rational. In the light of this hypothesis, another question may that why these changes are rather seen in postshunt obstructive hydrocephalus patients in comparison to communications’ hydrocephalus patients. In addition, other questions to be asked are may there specific clinical parameters discriminating these minority ratios of NPH patients with callosal hyperintensity from others? or may this radiological finding be a marker in understanding the processing pressure gradients in hydrocephalus and even in the prediction of the prognosis of the patients? Results of future prospective studies as well as valuable case illustrations such as Mullaguri et al. are warranted to clarify these questions. Specifically, functional neuroimaging studies may add substantial contributions to our understanding of this mysterious neuroimaging sign in hydrocephalus patients.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

  1. , , , , . White matter changes in corpus callosum in a patient with idiopathic normal pressure hydrocephalus. J Neurosci Rural Pract. 2017;8:657-9.
    [Google Scholar]
  2. , , , . Corpus callosal signal changes in patient with obstructive hydrocephalus after ventriculoperitoneal shunting. Neurologia. 2005;20:692-3.
    [Google Scholar]
  3. , , , . Corpus callosal signal changes in patients with obstructive hydrocephalus after ventriculoperitoneal shunting. AJNR Am J Neuroradiol. 2001;22:158-62.
    [Google Scholar]
  4. , , , , . Lesions of the corpus callosum in hydrocephalic patients with ventricular drainage – A CT-study. Acta Neurochir (Wien). 1996;138:174-8.
    [Google Scholar]
  5. , , , , . The radiological findings of hypoglycemic encephalopathy: A case report with high b value DWI analysis. Medicine (Baltimore). 2017;96:e8425.
    [Google Scholar]
  6. , , , , , , . Splenial lesions of the corpus callosum: Disease spectrum and MRI findings. Korean J Radiol. 2017;18:710-21.
    [Google Scholar]
  7. , , , , . Scalloping deformity of the corpus callosum following ventricular shunting. AJNR Am J Neuroradiol. 1993;14:355-62.
    [Google Scholar]
Show Sections